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Abstract— We describe a real-time pedestrian detection sys-
tem intended for use in automotive applications. Our system
demonstrates superior detection performance when compared
to many state-of-the-art detectors and is able to run at a
speed of 14 fps on an Intel Core i7 computer when applied to
640×480 images. Our approach uses an analysis of geometric
constraints to efficiently search feature pyramids and increases
detection accuracy by using a multiresolution representation
of a pedestrian model to detect small pixel-sized pedestrians
normally missed by a single representation approach. We have
evaluated our system on the Caltech Pedestrian benchmark
which is currently the largest publicly available pedestrian
dataset at the time of this publication. Our system shows
a detection rate of 61% with 1 false positive per image
(FPPI) whereas recent other state-of-the-art detectors show
a detection rate of 50% ∼ 61% under the ‘reasonable’ test
scenario (explained later). Furthermore, we also demonstrate
the practicality of our system by conducting a series of use case
experiments on selected videos of Caltech dataset.

I. INTRODUCTION

Vision-based pedestrian detection is a popular research
topic in the computer vision community due to direct applica-
tion of topics such as visual surveillance [20] and automotive
safety [18], [14]. In the past few years, impressive progress
has been made, such as found the works of [17], [19], [4],
[11], [24], [6], and these insights suggest that they can and
should be applied to real world applications. Within the past
few years, extremely challenging real-world datasets such
as the Caltech Pedestrian [7] and Daimler Pedestrian [8]
collections have been introduced. These public datasets allow
researchers to evaluate their algorithm’s performance against
that of other researchers. We have been making use of these
in our research.

Carnegie Mellon University won the 2007 DARPA Urban
Challenge with the autonomous vehicle “Boss” [9]. However,
in that race, no pedestrians were allowed on the track. While
impressive, the technology necessary to win that race is
insufficient for operating on real roads. Our recent work has
been to focus primarily on developing a real-time pedestrian
detection system for automotive safety applications which
could be used by both an autonomous vehicle to help it safely
navigate roads as well as by a manually-driven vehicle as an
early-warning system for the driver. The contributions of this
work are threefold.
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Fig. 1. Typical detection results of our on-board pedestrian detection
system. With a multiresolution deformable part-based model, the system
can detect pedestrians up to 25m reliably.

The first main contribution is a C implementation of our
detection system suitable for real-time operation. Achieving
real-time detection speed is by no means a trivial process
especially for most of the state-of-the-art detectors which
usually use a sliding window method. Our detection system
is based on the star-cascade algorithm [10] for a part-based
deformable model [11] introduced by Felzenszwalb et al.
which is considered as one of the most successful approaches
in general object detection. Because of the generality of this
method, we can relatively easily apply our system to other
relevant categories such as vehicles and bicycles by providing
a new training set. In our implementation, we simplify the
structure of the star-cascade model for improved speedup and
demonstrate a real-time performance with a vehicle-mounted
camera.

The second main contribution is a safe geometric con-
straint analysis based on known camera calibration infor-
mation for efficient search. Usually, the availability of such
information is not assumed in general object detection ap-
plications, but for automotive applications where the camera
will be mounted in a known position in the vehicle, this
information is very useful to exploit. By doing so, we are
able to not only accelerate our detection process by searching
only relevant image spaces, but we are also able to improve
detection accuracy by suppressing a number of potential
false positives from irrelevant image space. Based on some
assumptions, we analyze the following relationships: ‘pedes-
trian height in pixels’ vs. ‘distance from a vehicle’ and



‘pedestrians’ foot position in images’ vs. ‘distance from a
vehicle’. We propose a simple algorithm for fast search based
on these relationship.

Our third main contribution is a quantitative evaluation
of our system using public real world datasets. First, we
compared our detector’s performance with current state-of-
the-art detectors using the Caltech Pedestrian Benchmark.
The Caltech dataset is at least two orders of magnitude
larger than most exting datasets and provides us a unique
and interesting opportunity for in-depth system evaluation.
Through a series of well designed experiments, we seek to
identify values for key design parameters of our detector such
as the optimal number of parts for our deformable part-based
model, the optimal number of scales per octave for multiscale
detection, etc.

The remainder of this paper is organized as follows.
Section II reviews related work on pedestrian detection.
Technical implementation details of our detection system are
described in Section III and a geometric constraint from
known camera calibration information is exploited for an
efficient search in Section IV. We describe experimental
results using the system in Section V and conclude in
Section VI.

II. RELATED WORK

For a comprehensive survey of recent works in vision-
based pedestrian detection, refer to [7], [15]. Dollár et al.
[7] focuses primarily on the pedestrian detection problem
and performs an intensive evaluation of the majority of
the state-of-the-art detector algorithms. Gerónimo et al. [15]
focuses on pedestrian protection systems for advanced driver
assistance systems which utilize tracking, scene geometry,
and stereo systems. We review here only important advances
for pedestrian detection (not tracking) and describe how
these detection approaches can be specially designed for
automotive applications.

Historically, one of the first pioneering efforts was the
work of Papageorgiou et al. [17] which used Haar wavelet
features in combination with a polynomial Support Vector
Machine (SVM). They also introduced the first generation
pedestrian dataset, known as the ‘MIT Pedestrian Dataset’.
Inspired by their work, Viola and Jones [19] brought several
important ideas into this field including the use of a new
machine learning algorithm (AdaBoost) for automatic feature
selection, the use of a cascade structure classifier for efficient
detection, and finally the use of an integral image concept for
a fast feature computation. Later, the authors demonstrated
how to incorporate space-time information into their simple
Haar-like wavelet features for moving people detection [20].

The next breakthrough in the detection technology occured
in a feature domain itself for pedestrian detection. Dalal
and Trigg [4] showed excellent performance for detecting
a human in a static image using dense HOG (Histogram
of Oriented Gradient) features with linear SVM. They also
introduced the second generation pedestrian dataset, called
the ‘INRIA Person Dataset.’ Currently, HOG is considered

to be the most discriminative single feature and is used in
nearly all modern detectors in some forms [7].

Detectors that improve upon the performance of HOG uti-
lize a fusion of multiple features and part-based approaches.
Wojek and Schiele [23] exploit several combinations of
multiple features such as Haar-like features, shapelets, shape
context, and HOG features. This approach is extended by
Walk et al. [21] by adding local color self-similarity and
motion features. Wang et al. [22] combined a texture de-
scriptor based on local binary patterns with HOG. Recently,
Dollár et al. [6] provided a simple and uniform framework
for integrating multiple feature types including LUV color
channels, grayscale, and gradient magnitude quantized by
orientation. That group also implemented a near real-time
version of this algorithm [5] which makes this method
suitable for automotive applications.

Part-based approachs have gained popularity recently
mainly because they can handle the various appearances
of pedestrians (due to clothing, pose, and occlusion) and
can provide a more complex model for pedestrian detection.
Mohan et al. [17] use this methodology to divide the human
body into four parts: head, legs, left arm, and right arm.
Each part detector is trained using a polynomial SVM
where outputs are fed into a final classifier after checking
geometric plausibility. Mikolajczyk et al. [16] model humans
as assemblies of parts that are represented by SIFT-like
orientation features. Felzenszwalb et al. [11] demonstrated
that their deformable part-based model human detector can
outperform many of existing current single-template-based
detectors [20], [4], [22]. Based on a variation of HOG
features, they introduce a latent SVM formulation for training
a part-based model from overall bounding box information
without part location labels. Bar-Hillel et al. [1] introduced
a new approach for learning part-based human detection
through feature synthesis.

Pedestrian detection algorithms have an obvious extension
to automotive applications due to the potential for improving
safety systems. In this case, the design criterion for a detector
might be very different as real-time operation is just impor-
tant as high detection accuracy. Shashua at al. [18] proposed
a part-based representation in a fixed configuration for pedes-
trian detection. The authors used 13 overlapping parts with
HOG-like features and ridge regression to learn a classifier
for each part and reported a classification performance of
a 93.5% detection rate and a 8% false positive rate. Gavrila
and Munder [14] proposed a pipline using Chamfer matching
and several image based verification steps for a stereo camera
setup. The classification performance was reported as a 90%
detection rate with a 10% false positive rate.

Our group has been making use of the deformable part-
based model [11] as part of a tracking-by-detection system
that is intended for use with an autonomous vehicle as
well as an early-warning system for driver safety. We have
demonstrated the algorithmic viability of these methods
in off-line analysis [2], [3] and in this work we seek to
demonstrate how these approaches can be implemented in
real-time.
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Fig. 2. Illustration of a procedure for a mutiscale pedestrian detection. The main computational bottlenecks are feature computation for densely sampled
image pyramid (HOG features in our case) and sliding-window classification (a large number of cross-correlation operations with several parts in our case).

III. IMPLEMENTATION OF DEFORMABLE
PART-BASED MODELS

Our approach is based on the deformable part-based HOG
model [11]. We have engineered this algorithm in an attempt
to optimize it to be the core of a real-time pedestrian
detection for automotive applications. To achieve this, we re-
implemented the algorithm (originally based in MATLAB/C)
using C and optimized several subsystems in an attempt
to improve the algorithms overall speed. The remainder of
this section discusses the main reasons for choosing the
deformable part-based model and describes the important
details of our implementation that were key to its fast
performance.

A. Why Deformable Part-Based Model ?

Real-time onboard pedestrian detection from a moving
vehicle is a challenging task especially when using a monoc-
ular camera as the primary (and sole) sensor. Although a
number of approaches have been proposed, there are still
a number of aspects of this problem that are difficult and
can be considered to be as of yet “unsolved.” That being
said, the accuracy and computational performance of these
detectors are improving with each successive publication. We
performed a broad survey across the current state-of-the-art
pedestrian detectors and ended up with the following meth-
ods [22], [11], [5], [1] as candidates for our implementation.

We opted to implement a detector based on the work of
Felzenszwalb at al. [11] for the following reasons. First,
this method provides an elegant mechanism for handling a
wide range of intra-class variability (i.e., various poses of
pedestrians) by having multiple submodels (so-called “com-
ponents”). Furthermore, the deformable part-based model
exploits dynamic configurations of its parts which allows for
a wider variation in object appearances to be accepted. The
importance of this aspect is well illustrated in a recent survey
[7]. Secondly, this method has a well-designed learning
technique called “latent SVM” which not only can handle
a large training set effectively, but also can learn a part-
based model without requiring information about exact part
labels. Finally, this approach utilizes an efficient detection

TABLE I
PROFILING RESULTS FOR ALL IMPLEMENTATIONS (UNIT:MS)

Algorithm Computer I Computer II
Name Intel Core2 Duo Intel Core i7

P8800@2.66GHz 2920XM@2.5GHz
2GB RAM 16GB RAM
Matlab star- C star- Matlab star- C star-
cascade cascade cascade cascade

HOG
Feature 1145 300 840 80
Computation
Sliding
Window 560 320 300 100
Classifier
Non-Maximal
Suppression 24 10 24 5

mechanism called the star-cascade algorithm [10] which
makes it suitable for real-time applications.

B. Implementation Details

Our implementation follows a standard procedure for
processing the image data that consists of first creating a
densely sampled image pyramid, computing features at each
scale, performing classification at all possible locations, and
finally performing non-maximal suppression to generate the
final set of bounding boxes. The key steps for this process
are illustrated in Figure 2. The key factors that we found
for producing the best results for our algorithm include
densely sampling the image pyramid, computationally inten-
sive (somewhat tedious) classification in the search space,
and the use of discriminative features such as HOG.

Our final goal in terms of speed performance was a speed
of 10fps on 640 × 480 resolution images. To understand
where our efforts would need to be applied in the imple-
mentation of this algorithm, we profiled the performance of
the original MATLAB/C based detectors. These detectors
included the voc-release3 and voc-release4 with
a star-cascade algorithm1 [13]. The profiling was performed
using two evaluation computers that included an Intel Core2

1http://www.cs.brown.edu/∼pff/latent/, accessed on May 2011



Duo P8800@2.66GHz with 2GB RAM, labeled computer I,
and an Intel Core i7 2920XM@2.5GHz with 16GB RAM,
labeled computer II. For 640×480 images and 10 scales per
octave, voc-release3 (1 component with 6 parts, multi-
threaded version) demonstrated a performance of 0.5 fps and
voc-release4 algorithm with a star-cascade algorithm
(1 component with 8 parts, single-threaded version) demon-
strated a performance of 0.6 fps on computer I. The details of
the profiling result is shown in Table I. As can be seen in this
Table, the two main bottlenecks are the computation of HOG
features for densely sampled image pyramids and the sliding-
window classification. Since the MATLAB/C based detector
already uses compiled C code (MEX functions in MATLAB)
we needed to approach these bottlenecks by developing
parallel (multi-threaded) implementation of the HOG feature
computation functions as well as the classification functions.
The key details to this implementation are described below:

Feature computation: Given an input image, the first
step of the pipeline is to build a densely sampled image
pyramid and compute the corresponding feature pyramid. For
an image pyramid, we employed the image resize function
of the OpenCV 2.0 library. For the HOG feature pyramid,
which was the first computational bottleneck, we refactored
the algorithm to make use of the pthread library. This was
possible because the computational process to generate each
level of the pyramid is independent of all the others. This
solution allowed us to speed the algorithm up by 1 order of
magnitude.

Sliding-window classification: For the voc-release3
algorithm which is based on star-structured models (1 root
filter and 6 part filters), this process at a certain pyramid
level corresponds to 7 times cross-correlations between each
model and that level of feature pyramid and then 6 times
generalized distance transforms [12] to combine all part filter
responses. In practice, a large number of cross-correlation is
the main bottleneck for this step. For this, the original method
provides a parallelized correlation scheme with a numerical
linear algebra enhanced function. We ported their MEX func-
tions into our implementation. Whereas, voc-release4
with a star-cascade algorithm provides an efficient way for
classification by evaluating parts in a cascaded fashion with
a sequence of thresholds. For implementation of this idea,
voc-release4 uses 2(n + 1) models for a model with
n+ 1 parts, where the first n+ 1 models are obtained by
sequentially adding parts with simplified apprearance models
(PCA version of original HOG feature) for faster computa-
tion and second n+ 1 models are obtained by sequentially
adding parts with its full feature. Our implementation is a
little bit different in that we just use n+ 1 cascade models
with full HOG feature for ease of implementation and we
parallelize the process using pthread library. By doing this,
we achieve 2X-4X speed improvement.

Non-maximal suppression: After sliding-window classi-
fication, we usually get multiple overlapping bounding boxes
from detections nearby locations and scales. Non-maximal
suppression (NMS) is used for eliminating those repeated
detections. Currently, two dominant NMS approaches have

  

Fig. 3. Geometric constraints analysis. (a) Scene geometry. (b) Pixel height
h as a function of distance d.

been widely used: mean shift mode estimation introduced
in [4] and pairwise max suppression introduced in [11]. We
implemented the pairwise max suppression scheme due to
its simplicity and efficiency.

IV. GEOMETRY ANALYSIS

The use of scene geometry enables two primary benefits
for pedestrian detection: efficient and accurate detection.
Efficiency can be achieved by searching only geometri-
cally valid regions in the image space and accuracy can
be achieved by suppressing a number of potential false
positives from the irrelevant image space. Many automotive
applications therefore exploit geometric constraints from the
known camera calibration information with some assump-
tions [18], [14]. Here, we propose a simple and efficient
search algorithm for our pedestrian detector by analyzing
the following relationships: ‘pedestrian height in pixels’ vs.
‘distance from a vehicle’ and ‘pedestrians’ foot position in
images’ vs. ‘distance from a vehicle’. For analysis for these
relationships, we assume that 1) ground plane is flat, 2)
pedestrians rest on the ground plane, and 3) localization of
bounding boxes is accurate (especially for bottom lines of
bounding boxes).

Pedestrian height in images: Since Caltech dataset was
colleced with a typical automotive camera settings (640×480
resolution, 27o vertical field of view, and fixed focal length
( f ) at 7.5mm), we can compute a pixel height h of a pedes-
trian in a image using a perspective projection model. From
Figure 3(a), we can easily draw the relationship between a
pixel height (h) and distance (d) as h ≈ H fp/d, where H is
the true pedestrian height and fp is the focal length expressed
in pixels. This relationship for Caltech dataset is shown in
Figure 3(b) assuming H = 1.8m.

Depth computation: In general, esimating depth informa-
tion from monocular camera images is impossible. However,
if all assumptions we mentioned above are true, we can
compute a range from the camera to a pedestrian. Here,



we avoid the derivation of this relationship due to space
limitation. The derivation is provided in our project website2.

We can search an input image efficiently by computing
depth information first according to a current y−coordinate
of searching step and then selecting geometrically plausible
scales of a feature pyramid so that a fixed size pedestrian
model can detect real pedestrians. By this search scheme,
we can achieve 2X-3X speed improvement.

V. EXPERIMENTAL RESULTS

To quantitatively evaluate our pedestrian detection system,
we analyzed its performance on various real-world datasets.
To evaluate detection performance, we used the Caltech
Pedestrian Dataset [7] which offers an opportunity to exploit
many different aspects of model training thanks to its large
number of positive samples. The (annotated) dataset corre-
sponds to approximately 2.5 hours of video captured at 30fps.
The dataset is segmented into 11 sessions, 6 of which were
used for training (S0∼S5) and the rest sessions were used
for testing (S6∼S10). We performed a set of experiments
to identify the key design parameters for the deformable
part-based model. Using the model trained with the optimal
parameters from the first set of experiments, we compare
our performance with other state-of-the-art detectors using
the Caltech Benchmark. This evaluation framework required
us to upscale the input images by a factor of 2 (with a
final resolution of 1280 × 960) for the first and second
experiments. For subsequent experiments, we fabricated our
own set of experiments (what we call ‘automotive’)
to better represent data that would be seen from real-time
automotive applications.

A. Sytem Design Parameters

Number of Training Samples: The Caltech dataset con-
tains approximately 2,300 unique pedestrians out of approx-
imately 347,000 total instances of pedestrians. Because of
this high level of redudancy and correlation in the sample im-
ages, we had to first determine the best sampling scheme to
obtain a statistically valid set of training images. We trained
7 models with a standard set of parameters (1 component 6
parts) where each model trained with a training set (S0∼S5)
consisting of images selected from the full data set at a
different sampling frequency. We trained models for each
of the following frequencies: 1, 10, 20, 30, 40, 50, and 60.
We ran each model on the test set (S6∼S10) and evaluated
them using the same evaluation code provided from [7] (ver.
3.0.0). The results of these experiments are shown in Table II,
where we use log-average miss rate (LAMR) to represent
detector performance by a single reference value. The LAMR
is computed by averaging miss rate at nine FPPI rates evenly
spaced in log-space in the range 10−2 to 100 according to [7].

Although there is no large difference in performance
between the settings, using every 30th training images (i.e.,
one training image per one second) in this case gives us the
best performance. We decided to use this setting throughout

2www.ece.cmu.edu/∼hyunggic/pedestrian.html

TABLE II
DIFFERENT SAMPLING SCHEMES FOR MODEL TRAINING

Sampling Scheme No. of Pos. Samples LAMR (%)
All frames 65570 56
Every 10th 6557 56
Every 20th 3261 55
Every 30th 2198 54
Every 40th 1629 55
Every 50th 1280 56
Every 60th 1088 58

the remainder of our experiments. This result has implication
in the generation of ground truth data as annotating every
30th frame of a dataset is far less expensive than having to
annotate every frame.

Number of Parts: The standard number of parts for the
deformable part-based model is 6 and 8 for voc-release3
and voc-release4, respectively. However, the optimal
number of parts depends on the variability of an object
class and may be significantly different between classes.
Our second experiment was designed to identify the optimal
number of parts required for the pedestrian models that
would be used for the automotive application. Once again,
we trained 7 models with different number of parts (2∼8)
using the exact same training set and tested them on the
testing set. As shown in Table III, using the standard part
number of 6 shows the best performance.

TABLE III
DIFFERENT NUMBER OF PARTS

No. of Parts LAMR (%)
2 58
3 55
4 55
5 56
6 54
7 56
8 56

In general, when selecting the number of parts, say for
voc-release3, it might be better to use 3 or 4 parts for a
faster detection rate. However, for the star-cascade algorithm
using 6 to 8 parts seems reasonable due to the cascaded
structure of its classifier. To balance efficiency and accuracy,
we decided to use 6 parts for our evaluations.

Number of Scales Per Octave: Typically, modern pedes-
trian detectors use two or three octaves and sample 8-14
scales per octave for accurate detection. Since the compu-
tational requirements for feature computation in this image
pyramid can be significant, new methods of handling this
issue must be identified. Recently, Dollár et al. [5] proposed a
technique to avoid constructing such a feature pyramid by ap-
proximating feature responses at certain scales by computing
feature responses at a single scale. They demonstrated that
the approximation is accurate within an entire scale octave.
Here, we are interested in primarily looking at performance
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Fig. 4. Evaluation results using the same criterions in [7]. (a) Overall performance on all annotated pedestrian images. (b) Performance on unoccluded
pedestrians over 80 pixels in height. (c) Performance on unoccluded pedestrians between 30-80 pixels in height. (d) Peformance on unoccluded pedestrians
over 50 pixels in height. (e) Same as (d) but with partial occlusion. (f) Performance on pedestrians at least 50 pixels in height under no or partial occlusion.

differences depending on different number of scales and
looking for a specific optimal solution for our configuration.
We tested 7 different settings and the results are shown in
Table IV. We found that even 4 scales per octave shows a
marked improvement over 2 scales per octave in accuracy.
We decided to use 4 scales per octave as a trade-off between
accuracy and performance.

TABLE IV
DIFFERENT NUMBER OF SCALES PER OCTAVE

Scales / Octave No. of Levels LAMR (%)
2 10 61
4 19 56
6 28 56
8 37 55

10 46 54
12 56 54
14 65 53

B. Evaluation with Caltech Benchmark

Using a model parameterized with the values identified
in our previous experiments, we compared the performance
of our detector with those of other state-of-the-art detectors
using the Caltech evaluation framework. This framework
provides a flexible way to evaluate detectors under various
conditions on mutiple datasets. We evaluated the perfor-
mance of the algorithms under six conditions on the testing
data in the Caltech dataset. Although the framework provides
detection results from sixteen pre-trained detectors to help

provide consistent comparison, we intentionally selected 10
of the most relevant top-performing detectors to increase the
clarity of the resulting graphs. The criterion we used to select
the algorithms was detection accuracy and runtime. One
exception is the “MultiFtr+Motion” algorithm, which shows
very slow detection speed (estimated around 30 seconds
for a 640× 480 image on our evaluation computer II). But
we included the method since it is the only method which
uses motion features in our list and because it shows the
best performance in most cases. We named our algorithm
“LatSvm-RT”. Following the naming convention for the Cal-
tech benchmark we described the other detectors as follows:
VJ [19], HOG [4], HogLbp [22], MultiFtr [23], LatSvm-
V2 [11], MultiFtr+CSS [21], FeatSynth [1], FPDW [5], Mul-
tiFtr+Motion [21]. All detectors except MultiFtr+CSS [21]
and MultiFtr+Motion [21] (which use their own dataset
called ‘TUD-MP’) were trained with the “INRIA Person
Dataset [4].” Note that the LatSvm-V2 is our baseline
detector, voc-release3. Our results are shown in Figure
4. Following the example found in [7], we plot miss rate vs.
false positives per image (FPPI) and use the log-average miss
rate as a single comparison value for the overall performance.
The entries are ordered in the legend from the worst log-
average miss rate to the best.

In general, our detector shows very good performance
except for the “partical occlusion” test case. Figure 4(a)
illustrates algorithmic performance on the entire test set
which contains pedestrians from 20 pixels in height which
are in general fairly poor. Results for near and medium scale
unoccluded pedestrians, corresponding to heights of at least



(a) Multiresolution pedestrian model
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Fig. 5. Evaluation results using the automotive criterion. (a) Multiresolution pedestrian model: high-resolution (128×40) with 475 positive samples and
row-resolution (64×32) with 2430 positive samples. (b) Performance on unoccluded pedestirans over 70 pixels tall.

80 pixels and 30-80 pixels, respectively, are shown in Figure
4(b) and Figure 4(c). In each case, our detector shows the
second best or best performance with a log-average miss
rate of 29% and 77%, respectively. As can be seen in Figure
4(d) and Figure 4(e), performance drops significantly under
partial occlusion, leading to a dramatic decrease of a log-
average miss rate from 51% to 82% for our case. This is
quite disappointing since our classification algorithm can
not handle partial occlusions even though the part-based
model itself has a rich representation for partial occlusion.
We will seek to address this through the development of a
new classification algorithm for partial occlusion handling in
our future work. Finally, Figure 4(f) shows performance on
pedestrians over 50 pixels tall under no or partial occlusion.
Here our detector shows second best performance with a
log-average miss rate of 54%.

C. Real-Time Evaluation

Because the goal of our research is to develop pedestrian
detection algorithms that are suitable for the rigors of deploy-
ment on an autonomous vehicle, we developed a new test
scenario that we call ‘automotive’ to show the performance
of our detector in this context. We define real-time operation
to be 10fps@640×480. For the automotive experiment, the
‘reasonable’ scenario in the Caltech benchmark does not
fit to our needs for several reasons. First, it uses detection
results from upscaled input images to compare performances.
However, it is almost impossible to process these images
at 10Hz without an unreasonable amount of computational
power. Second, we need to adjust ground truth information
according to our working distance. In the ‘automotive’
setting, we can only include unoccluded pedestrians within
25m from a vehicle (corresponds to 70 pixels in height)
in the ground truth. To increase the working range of our

detector while maintaining a high detection rate, we trained
a multiresolution pedestrian model (shown in Figure 5(a)).
We intentionally set the height of our low-resolution model
as 64 pixels so that our system can detect pedestrians up
to 25m reliably. We run our detector on the Caltech testset
without upscaling (i.e., 640×480 images) with the efficient
search scheme discussed in Section IV. We achieve a real-
time operation at 14fps with a log-average miss rate of 38%.
We believe our work is a meaningful progress of state-of-the-
art pedestrian detectors. The performance is shown in Figure
5(b) and some qualitative results achieved on the Caltech
testset are shown in Figure 6.

VI. CONCLUSIONS AND FUTURE WORK
This paper presents a real-time pedestrian detection sys-

tem for intelligent vehicles using a deformable part-based
model. For support real-time operation, we implement two
different versions of Felzenszwalb et al.’s object detection
systems (a baseline [11] and a star-cascade method [10]).
Scene geometry from known camera calibration information
is utilized to search a feature pyramid more efficiently.
For better detection accuracy, a multiresolution pedestrian
model is used for detecting small (pixel-sized) pedestrians
as well as normally-sized ones. Using the Caltech Pedestrian
Dataset, we quantitatively evaluated our detection system
with a series of experiments and showed real-time operation
(14fps@640x480 images) while maintaining the state-of-the-
art detection accuracy (80% detection rate with 1 FPPI)
under our test scenario called ‘automotive’. As part of our
future work we want to develop a partial occlusion handling
algorithm to increase detection accuracy.
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